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You’ll learn:
When you run a CT scan, you always run a 
reconstruction calculation to convert the 
2D projections to 3D volume data. Have 
you ever wondered how reconstruction 
works?

In this workshop, you will learn how 
reconstruction works and become more 
familiar with terms such as Radon 
transformation and sinograms.

You can also download the open-source 
image processing program ImageJ and 
run Radon transform and reconstruction 
calculations to have hands-on experience 
and deepen your understanding of 
reconstruction.

Here is the recording of the workshop.
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https://imaging.rigaku.com/learning/x-ray-ct-webinars-and-workshops/recording-051122


CONTENTS

04 1. What is reconstruction?

10 2. What is projection data?

15 3. How does Filtered Back Projection 
work?

22

32

4. ImageJ hands-on exercises

33

About the tool

Take-aways

2



Aya holds a PhD in engineering from Osaka University 
and a MA in physics from Tokyo University of Science 
and has been with Rigaku for 24 years. She started in 
the X-ray Diffraction Application Lab and transitioned 
to X-ray Imaging in 2017. Her goal: Help non-expert X-
ray users achieve expert results with less time and 
effort. She has worked on many projects designing 
automated and user-friendly X-ray instruments and 
analysis software. She is very passionate about helping 
people learn more about X-rays and working with X-ray 
users to solve their specific problems. 

PRESENTERS

Presenter: Aya Takase
Director of X-ray Imaging

3

Co-presenter: Angela Criswell
Senior Scientist

Host: Tom Concolino
Southeast Regional Account 

Manager

Angela holds a PhD from Rice University and has been 
with Rigaku for 20 years. She started in the 
Macromolecular Crystallography Applications lab 
focusing on X-ray techniques to study structural 
biology. She has gained expertise in a number of X-ray 
methods in her tenure at Rigaku, including small angle 
X-ray scattering and X-ray computed tomography. 
Angela likes working with customers to find the best fit 
for their samples while addressing their specific 
experimental questions.

Tom holds a PhD in Chemistry from Mississippi State 
University and has been with Rigaku for 21 years. He 
started out in the Small Molecule Crystallography 
Applications Lab before transitioning to the sales team 
in 2002. He has been on the front lines helping clients 
save on time, cost, and effort while pushing forward to 
support the never-ending need to innovate and explore 
new materials and structures. From academia to 
mining to pharmaceutical research, Tom has learned 
the value of bringing a fresh perspective to each 
customer application while utilizing his vast experience 
to collaborate on the best fit solution for each and 
every customer.

https://www.linkedin.com/in/ayatakase/
https://www.linkedin.com/in/acriswell/
https://www.linkedin.com/in/tomconcolino/


When we run a CT (computed tomography)
scan, we collect radiographs or 2D 
projections. All portions of the sample in the 
X-ray beam path get projected on top of each 
other. How do we convert them into a 3D map 
of the object or a collection of tomographic 
cross-sections? This process of restoring the 
original higher-order dimensions from lower-
order observable values is called 
reconstruction.

Reconstruction is arguably the most 
important concept of X-ray CT. Because most 
artifacts are generated in this process, it is 
important to understand reconstruction to 
prevent or reduce these artifacts. However, 
reconstruction is also the most confusing part 
of image processing involved in CT.

What is 
reconstruction?
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https://imaging.rigaku.com/learning/x-ray-ct-glossary#x-ray-computed-tomography
https://imaging.rigaku.com/learning/x-ray-ct-glossary#artifact


The first thing some 
people are confused about 
is which part of their 
everyday data processing 
is reconstruction.

During the data collection, 
we collect 2D projections 
observed on the detector. 
(Note: These can be 1D 
profiles when a line 
detector is used.) 
Converting the 2D 
projections into 3D data or 
a set of cross-sections is 
the reconstruction 
process.

We sometimes see a CT 
scan represented in a 3D 
rendered view. This is 
merely a different 
representation of a set of 
cross-sections.

EXAMPLE

Example

Figure 1 shows different stages and representations of X-ray 
image data: projections, cross-sections, and 3D rendering, 
using a 3D printed plastic object as an example.
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Projections

Figure 1: Projections, cross-
sections, and 3D rendering.
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X-ray CT Geometries

As you will see later, we attempt to 
“back-calculate” the absorption 
coefficient distribution in the sample 
based on the observed projections. To 
do this, we need to model the X-ray CT 
geometry.

Figure 3 shows three commonly used 
X-ray CT geometries. To keep it simple, 
we will focus on the parallel beam 
geometry here. You can extend the 
theory we will review here to other 
geometries.

If you are interested, this video shows 
how the filtered back projection 
calculation is extended from the 
parallel beam to the fan beam 
geometry: Intro to Digital Image 
Processing by Rich Radke - # 19 Fan 
beam reconstruction.
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Figure 2: Widely used X-
ray CT geometries

Incident
X-rays

Detector
Sample

(a) Parallel beam 
geometry

(b) Fan beam 
geometry

(c) Cone beam 
geometry

https://www.youtube.com/watch?v=ETlgxFcxelw&list=PLuh62Q4Sv7BUf60vkjePfcOQc8sHxmnDX&index=22


The concept of reconstruction was first 
presented by Johann Radon in 1917. 
The word “tomography” didn’t even 
exist at that time, but his theory proved 
that CT reconstruction was possible. It 
was later demonstrated by 
experiments, and commercial medical 
CT scanners became available in 1971.
For the development of commercial CT 
scanners, Sir Godfrey N, Hounsfield and 
Allan M. Cormack, were awarded the 
Nobel Prize in Physiology or Medicine 
in 1979.

Today, there are a variety of 
reconstruction techniques. Here is a 
non-exhaustive list:

•Algebraic Reconstruction Technique

• Iterative Reconstruction

•Filtered Back Projection

•Convolution Back Projection

•Deep Learning Reconstruction

Algebraic Reconstruction 
Technique

Let’s review the most basic technique, 
Algebraic Reconstruction Technique 
(ART) first. This technique, as its name 
indicates, algebraically reconstructs 
the original absorption coefficient 
distribution.

7

RECONSTRUCTION 
TECHNIQUES

https://books.google.com/ngrams/graph?content=tomography&year_start=1800&year_end=2019&corpus=26&smoothing=3&direct_url=t1%3B%2Ctomography%3B%2Cc0#t1%3B%2Ctomography%3B%2Cc0
https://www.nobelprize.org/prizes/medicine/1979/summary/


To keep it simple, we consider a 2 by 2-
pixel object. The pixel thickness is s, 
and each pixel has a unique linear 
absorption coefficient µ1, µ2, µ3, and µ4

as shown in Figure 3. We put an X-ray 
beam with intensity I0 through the 
sample in the horizontal direction and 
observe the transmitted X-ray 
intensities I12 and I34. Then we change 
the X-ray beam direction and repeat the 
same experiment in the vertical 
direction to obtain I13 and I24.

The relationship between the 
transmitted and incident X-ray 
intensities follows the Beer-Lambert 
law:

where µ and s are the linear absorption 
coefficient and thickness of the object 
I0 goes through, respectively.

Using this relationship, we can describe 
the 2 by 2-pixel experiment as follows:
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BEER-LAMBERT LAW

μ1 μ2

μ4μ3

s

I0

I0

I12

I34

I13 I24

I0 I0

Figure 3: 2 by 2-pixel 
experiment

𝐼 = 𝐼0𝑒−𝜇𝑠

𝐼12 = 𝐼0 exp − 𝜇1 + 𝜇2 𝑠

𝐼34 = 𝐼0 exp − 𝜇3 + 𝜇4 𝑠

𝐼13 = 𝐼0 exp − 𝜇1 + 𝜇3 𝑠

𝐼24 = 𝐼0 exp − 𝜇2 + 𝜇4 𝑠



Here, we have four equations and four 
unknown parameters to figure out to 
know the exact absorption coefficient 
distribution inside of this 2 by 2-pixel 
object. Therefore, we can solve these 
relational equations to obtain µ1, µ2, µ3, 
and µ4.

This is called the Algebraic 
Reconstruction Technique. Because 
this is a direct calculation of the 
absorption coefficient distribution, it 
suffers from fewer artifacts compared 
to other techniques. It tolerates a lack 
of projections better than other 
techniques. For those reasons, it is 
used for medical CT reconstruction in 
some cases.

Further Reading

Radon, J. On the determination of 
functions from their integral values 
along certain manifolds, IEEE Trans. 
Med. Imaging, 5 (4). (English 
translation published in 1986)

https://doi.org/10.1109/TMI.1986.430
7775
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RADON’S ORIGINAL 
PAPER (ENGLISH 
TRANSLATION)

https://doi.org/10.1109/TMI.1986.4307775


We have been using the term “projection.” 
Before moving on to another reconstruction 
technique, let’s define what projection data is. 
This is an important concept to understand 
before getting into the next technique, Filtered 
Back Projection (FBP).
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What is 
projection data?

Absorption coefficient µ(x, y)

x

y

θ

Figure 4: Experimental setup. The scanned 
object is µ(x, y) and generates a projection p(t, 
θ) at angle θ when X-rays I0 travel through it.

Incident X-rays I0



Projection p(t, θ)

A projection is what we observe on the 
detector after X-rays transmit through 
an object. Let’s look at one X-ray beam, 
I0, as shown in Figure 5. The 
transmitted X-ray intensity I follows 
Beer-Lambert law:

The linear absorption coefficient µ is a 
function of the location (x, y), as shown 
in Figure 4, therefore:

Using this equation, we can define the 
projection p(t, θ) as absorption 
integrated through the thickness:
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Figure 5: Experimental 
setup
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y

Incident X-rays I0
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Transmitted
X-rays I
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∞
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Radon Transformation

When we run a CT scan, we collect a 
set of projections p(t, θ) for a wide 
range of θ, normally 0 – 180 degrees 
for the parallel beam geometry, 0 – 360 
degrees for the cone beam geometry. 
As we collect the data, we are 
converting µ(x, y) into p(t, θ).

This conversion, expressed in equation 
(*) on page 11, is called Radon 
transformation or forward projection.

Sinogram

Let’s take a look at an example of 
Radon transformation using the cross-
section shown in Figure 6. You see a 
high-density (bright) egg-shaped object 
in the air (black). The “egg” has a low-
density (gray) yolk-like circle. The 
absorption coefficient of each location 
is µ(x, y).

You can convert this cross-section µ(x, 
y) into p(t, θ) using equation (*) and 
obtain the sinogram, also shown in 
Figure 6.
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𝜇 𝑥, 𝑦 → 𝑝 𝑡, 𝜃

𝜇 𝑥, 𝑦

x

y

Cross-section

𝑝 𝑡, 𝜃
θ

t

0 180

Sinogram

Figure 6: Original 
absorption coefficient 
distribution µ(x, y) 
shown in a cross-
section (top) and its 
Radon transform, p(t, θ) 
shown in a sinogram 
(bottom).



A sinogram has the X-ray angle θ  and 
the detector position t, as its axes. Let’s 
see what happens if we track a point in 
the cross-section.

In the top cross-section view of Figure 
7, we see a red spot. When an X-ray 
beam goes through this spot from 
different angles from 0 to 90 degrees, 
the projection corresponding to this red 
spot shows up in the sinogram, as 
shown in Figure 7 at the bottom. Its 
path follows a sign curve. This is where 
the term “sinogram” came from.

Why is this important? Sinograms are 
convenient representations of 
projection data, and they help us better 
understand what is happening in the 
projection space.

For example, if something goes wrong 
during CT data collection or a detector 
has hot or dead pixels, it is easy to spot 
them in a sinogram.
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𝜇 𝑥, 𝑦

x

y

Cross-section

𝑝 𝑡, 𝜃
θ

t

0 180

Sinogram

Figure 7: θ rotation in 
the cross-section and  
sinogram spaces



A normal sinogram (Figure 8(a)) shows 
a collection of smooth sine curves.

Vertical lines darker or lighter than the 
surrounding areas, as shown in Figure 
8(b), indicate the detector or the X-ray 
source went dark or bright during the 
scan.

As shown in Figure 8(c), an overall shift 
of the projection indicates the sample 
moved during the scan. When using the 
parallel beam geometry, the projection 
at 180 degrees should be a perfect 
mirror image of the one at 0 degree. In 
this example. The top and bottom 
edges shifted to the lower side at 180 
degrees, indicating sample movement.

Horizontal lines that are darker or 
lighter than the surrounding areas, as 
shown in Figure 8(d), indicate that the 
detector has hot, cold, or dead pixels 
that response differently from the 
surrounding pixels.

As we will see in the hands-on 
exercises, these abnormalities cause 
various artifacts in the reconstructed 
CT images.
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Figure 8: Various 
abnormalities identified 
in sinograms

(a) Normal 

(b) Vertical lines
They indicate 
either the 
detector or the 
X-ray source 
went dark 
during a scan. 

(c) Shift with θ
It indicates the 
sample moved 
during a scan. 

(d) Horizontal 
lines
They indicate 
the detector has 
hot, cold, or 
dead pixels.

https://imaging.rigaku.com/learning/x-ray-ct-glossary#artifact


As we reviewed earlier, the Algebraic 
Reconstruction Technique reduces artifacts 
and requires a relatively small number of 
projections.

However, the calculation becomes 
complicated and starts taking a long time as 
the image matrix becomes large, a 3000 x 
3000 x 3000 voxels cube, for example, a 
typical size of a micro-CT scan.

This is where the Filtered Back Projection 
(FBP) technique comes in handy. As the name 
suggests, it generates µ(x, y) by back-
projecting p(t, θ).
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How does 
Filtered Back 
Projection work?



Filtered Back Projection

In a CT data collection, we observe 
projections p(t, θ) and reconstruct the 
original absorption coefficient 
distribution µ(x, y).

The projection p(t, θ) is a forward 
projection or Radon transform of the 
original absorption coefficient 
distribution µ(x, y). In other words, µ(x, 
y) is a back projection of p(t, θ).

The Filtered Back Projection (FBP) 
calculates the back projection of p(t, θ) 
to reconstruct µ(x, y). Because we 
already know the forward projection 
follows equation (*), we can calculate 
the back projection based on this 
equation.
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Figure 9: Forward and 
backward projections



Graphical Representation of FBP

We will review the FBP technique using 
a graphical representation using the 
egg-like object’s cross-section we used 
in the previous section.

When X-rays go through the object in a 
0-degree direction, we obtain a 
projection shown at the top of Figure 
10. The gray “yolk” causes a dent in the 
projection due to its lower density than 
the surroundings. At 90 degrees, as 
shown at the bottom of Figure 10, the 
dent shows up in the center.

We can convert these projections into 
gray-level images and add them, as 
shown in Figure 11. The “dent” in each 
projection indicates where the “yolk” is. 
As you see in Figure 11, by adding 
these projections, we can eventually 
figure out where the “yolk” is.
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Projection at 0°

0°

90°

Figure 10: Projections 
at 0 and 90 degrees.

+ =

Figure 11: Adding projections from 0 and 90 degrees.

“yolk”



The reconstruction from two 
projections might not look like much, 
but you can already see the rough size 
of the “egg” and the location of the 
“yolk.”

As you increase the number of 
projections, the reconstructed cross-
section becomes more refined, as 
shown in Figure 12.

In theory, the number of projections 
you need, N, to accurately reconstruct 
the original image is calculated as:

N = Field of view / voxel size

Recall the example of the Algebraic 
Reconstruction Technique. The field of 
view was two-pixel wide. So N = 2. We 
used 0 and 90 degrees, two projections, 
to solve four relational equations. That 
is the exact amount of information we 
need to reconstruct the original image.

Now, let’s consider why these images 
in Figure 12 are blurred.
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Figure 12: 
Reconstructed cross-
sections from 4, 8, 24, 
and 120 projections.

4 projections

8 projections

24 projections

120 projections

https://imaging.rigaku.com/learning/x-ray-ct-glossary#field-of-view
https://imaging.rigaku.com/learning/x-ray-ct-glossary#voxel


Fourier Slice Theorem

To understand what blurs the 
reconstructed image, we need to go 
back to the math behind it.

We will skip the deriving of the 
relationship, but the 1D Fourier 
transform of the projection p(t, θ) is 
equal to a slice, at θ, of F(u, v) that is a 
2D Fourier transform of µ(x, y). See 
Figure 13.

This is called the Fourier slice theorem 
or the projection slice theorem. It is a 
convenient theory, as we will see next.
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Figure 13: Relationship of the original image, its Fourier transform, and 
the projection

x

y

θ

Projection p(t, θ)

u

v

θ

Absorption coefficient µ(x, y)
(Original image)

F(u, v)
(2D Fourier transform of µ(x, y))

A slice of F(u, v) at θ
1D Fourier transform



The Fourier slice theorem tells us all we 
need to do to reconstruct the original 
image is as follows:

1. Collect projections.

2. Fourier transform projections.

3. Add all projections in the Fourier 
space.

4. Inverse Fourier transform the 
results.

We need to consider that a slice of 
projection is not a line in reality but a 
rectangular shape with a width, as 
shown in Figure 13. This width causes 
uneven adding as shown in Figure 14 at 
the top. The center area has many data 
points added while the edge has fewer. 
This is what causes the blurring of the 
reconstructed image we saw on page 
18.

To avoid this issue, we need to 
downweigh the center part of the 
slices, as shown at the bottom of 
Figure 14. The downweighing process 
is called filtering. Typical filters include 
the ramping, Hann, Ramachandran-
Lakshminarayanan, and Shepp-Logan 
filters.
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u

v

F(u, v)
(Fourier transform

of µ(x, y))

A slice of F(u, v) at θ

A line in theory
A rectangular in reality

Figure 13: The theory 
and reality of a slice 
F(u, v) at angle θ.

u

v

u

v

Figure 14: Without (top) 
and with (bottom) 
ramping filter



Figure 15 shows some of the 
representative filters. As you will see in 
the hands-on exercise section, these 
filters can affect the resolution and 
contrast of the reconstructed images.

Further Reading

Toda, H. (2021). X-ray CT: Hardware 
and Software Techniques. Springer. 
https://doi.org/10.1007/978-981-16-
0590-1

If you are interested in how the Fourier 
slice theorem is derived, this video 
shows the process: Intro to Digital 
Image Processing by Rich Radke - # 18 
Reconstruction from parallel 
projections and the Radon transform.

If you want to understand what exactly 
a Fourier transform is, this visual 
representation of the concept might 
help: But what is the Fourier 
Transform? A visual introduction by 
3Blue1Brown.
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Figure 15: Various filters

https://doi.org/10.1007/978-981-16-0590-1
https://www.youtube.com/watch?v=ZgcD4C-4u0Q&list=PLuh62Q4Sv7BUf60vkjePfcOQc8sHxmnDX&index=22
https://www.youtube.com/watch?v=spUNpyF58BY


Hands-on exercises help us understand how 
the forward projection and the back 
projection, i.e., reconstruction, work.

In this section, we will apply forward and back 
projections to sample images and observe the 
effects of the number of projections, filters, 
and abnormalities in sinograms using an 
open-source Fiji distribution of ImageJ and 
Radon transform plugin.

If you are new to ImageJ, watch this Mini 
Tutorial: ImageJ Getting Started Guide.
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ImageJ hands-
on exercises

https://8540596.fs1.hubspotusercontent-na1.net/hubfs/8540596/XCT/XCT%20Blog/Image_Processing_Workshop_3_sample_images.zip
https://imagej.net/Fiji
https://imagej.nih.gov/ij/plugins/radon-transform.html
https://imaging.rigaku.com/learning/mini-tutorials-x-ray-ct-explained-with-imagej


PLAY WITH THE SETTING 
PARAMETERS TO SEE HOW THE 
RESULTS CHANGE AS YOU GO 
THROUGH EXERCISES.

Go Deeper

ImageJ is a convenient tool for image 
processing and gives us a quick hands-
on experience. But if your goal is to 
write your own code for image 
processing, MATLAB is also a good 
place to start. Intro to Digital Image 
Processing by Prof. Rich Radke is an 
excellent introductory course for image 
processing and uses MATLAB to 
demonstrate various filters and 
operations.
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https://www.mathworks.com/products/matlab.html
https://www.youtube.com/watch?v=UhDlL-tLT2U&list=PLuh62Q4Sv7BUf60vkjePfcOQc8sHxmnDX


The optimum number of 
Scans is automatically 
calculated by the plugin 
based on the size of the 
original cross-section.

The Angular increments can 
be edited. This tool assumes 
the parallel beam geometry 
and calculates sinograms 
from 0 to 180 degrees. If you 
set the Angular increments 
to 1 degree, for example, the 
tool will generate 180 views 
(projections.)

24

Radon Transformation

Let’s generate 1D 
projections from a 2D cross-
section using Radon 
transformation.

Generating sinograms

(Plugins Menu → Radon 
Transform)

We will use the Radon 
Transform plugin to 
generate a sinogram, which 
is a collection of projections.

2D cross-section: An egg-like 
object. Black indicates the air 
with virtually no absorption. The 
gray egg and white yolk have 
medium and high absorption 
coefficients, respectively.



Compare the results with 
and without the filter.

You can see the drastic 
change in the reconstruction 
results. The ramp filter 
eliminated the blurring.
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Click the Calculate button to 
run the calculation.

Now, let’s reconstruct the 
original image using this 
sinogram. First, click the 
Reconstruct button and run 
the reconstruction with “Use 
Filtering” off.

Sinogram: 180 projections with 
1-degree increments

Reconstruction: From 180 
projections, without filter

Reconstruction: From 180 
projections, with the ramp filter



As you see in this example, a 
lack of projections causes 
line-like artifacts and angular 
and not s smooth 
representation of the object 
in the reconstructed image.

Sinograms with 
abnormalities

Let’s look at sinograms with 
abnormalities caused by 
various problems that 
happened during data 
collection and see how they 
affect the reconstructed 
images.

Sinogram with vertical lines

Click the Import Data button 
and select a sinogram with a 
vertical line. 
(egg_Sinogram_vertical_line.
tif)

Click “Columns.”
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Next, let’s see what happens 
when we use very few 
projections. Change the 
Angular increments to 60 
degrees and generate three 
projections.

Reconstruct the original 
image using this sinogram 
with the ramp filter.

Sinogram: 3 projections with 60-
degree increments

Reconstruction: From 3 
projections, with the ramp filter



You see streak artifacts at 
an angle where the detector 
or the source went dark.

Sinogram with distortion

Repeat the same process 
using the distorted 
sinogram.

(egg_Sinogram_distorted.tif)

This type of distortion 
indicates that the sample 
moved or changed its shape 
during the data collection.
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The dark vertical line in the 
sinogram indicates the 
detector or the X-ray source 
went dark during the data 
collection.

Click the Reconstruct 
button to generate the 
reconsecration. (with the 
ramp filter)

Sinogram: A dark line runs 
vertically.

Reconstruction: The dark 
vertical line caused tilted 
streaks.

Sinogram: The bright part shifts 
downwards with increasing 
projection angle.



Sinogram with horizontal 
lines

Repeat the same process 
using the sinogram with 
horizontal lines.

(egg_Sinogram_horizontal.tif)

These horizontal lines in the 
sinogram indicate the 
detector has hot, cold, or 
dead pixels with sensitivity 
different from the 
surrounding pixels.
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The resulting reconstruction 
exhibits streak artifacts.

The artifacts caused by 
sample movement often 
look similar to the artifacts 
caused by an incorrect focus 
correction. Not being able to 
find the correct focus value 
is a sign of sample 
movement. Or, you can 
investigate the sinogram to 
see if the sample moved 
because the sinogram is not 
affected by the focus 
correction.

Sinogram: Dark and light lines 
run horizontally.

Reconstruction: The distortion 
of the sinogram caused half-
circle and line streaks.



Filters

Let’s compare different 
filters and see how they 
affect the reconstructed 
images.

Calculate a Radon transform 
of this image and 
reconstruct it using different 
filters.
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The resulting reconstruction 
exhibits half-circle lines.

When the sinogram runs 
from 0 to 360 degrees, as in 
the case of the cone beam 
geometry, the half-circle 
lines becomes full rings. 
This is how the commonly 
observed ring artifacts are 
caused.

2D cross-section: bird.tiff

Reconstruction: The horizontal 
lines in the sinogram caused 
artifacts that look like half-circle 
lines.



Original

Ramp filter

Hann filter
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Although the reconstructed 
images are very close to the 
original, we can see some 
differences.

The ramp filter 
reconstruction has lower 
contrast and higher noise. 
The edges of the white 
circles look relatively sharp.

Meanwhile, the Hann filter 
reconstruction shows 
blurred interfaces between 
the white circles and black 
background. At the same 
time, it exhibits higher 
contrast and lower noise.



Run the Radon transform 
and generate a sinogram. 
Check “Do Entire Stack” to 
run it on the entire stack.

178 sinograms are 
generated. The number 178 
comes from the number of 
slices in the original image.

Reconstruct the 3D volume 
from these sinograms and 
confirm that the original 
object is restored.
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3D Volume Data

We have been using 2D 
cross-sections and their 1D 
projections. However, when 
we run CT scans, we scan a 
3D volume and often 
observe its 2D projections.

Let’s apply the Radon 
transform to 3D volume data 
to see how it works.

Open the 3D volume data of 
a shark tooth. (shark_ 
tooth_180um.tiff)

Then display the 3D 
rendering of the data.

(Plugins Menu → Volume 
Viewer)

Sinogram: One of the 178 
sinograms



ABOUT THE TOOLS

Fiji: A distribution of ImageJ

ImageJ is an open-source image 
processing program for scientific 
multidimensional images. We used Fiji 
distribution in this workshop. You can 
download Fiji for Windows, Mac, or 
Linux from this link:

https://imagej.net/software/fiji/downlo
ads

Radon transform plugin

The Radon transform plugin used in 
this workshop is available from this 
link:

https://imagej.nih.gov/ij/plugins/radon
-transform.html
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https://imagej.net/software/fiji/downloads
https://imagej.nih.gov/ij/plugins/radon-transform.html


Reconstruction is what makes CT possible. 
You might use software to run reconstruction 
and don’t need to understand how it works. 
But when something goes wrong, 
understanding this theory is essential to 
realize that something is not right and to 
figure out how to fix the problem.

You might also face a need to reduce the 
number of projections, increase the scan 
speed without sacrificing the image quality, 
etc. Using a different reconstruction 
technique, such as the iterative or deep 
learning reconstruction, can satisfy these 
needs. Understanding the basic theory of 
reconstruction also helps you choose the right 
alternative reconstruction technique.

Takeaways
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CONTACT US

imaging@rigaku.com

LET’S LEARN TOGETHER
Many people have learned what X-ray computed 

tomography (CT) is, how it works, and where it 
can be helpful in our webinar and workshop 

series. All recordings, application examples, a 
publication list, and blog articles are available at

imaging.rigaku.com.

Subscribe to the email updates to stay informed 
about new articles, recommended publications 

and books, and upcoming learning events.

mailto:imaging@rigaku.com?subject=Questions/comments%20about%20Image%20Processing%20Workshop
https://imaging.rigaku.com/
https://imaging.rigaku.com/subscribe

