WELCOME TO RIGAKU VIRTUAL WORKSHOP DEEP DIVE: DIGITAL ROCK ANALYSIS 1. Data Collection

Presenter: **Aya Takase** | Director of X-ray Imaging Co-presenter: **Angela Criswell** | Senior Scientist Host: **Tom Concolino** | Analytical X-Ray Consultant

GEODICT The Digital Material Laboratory

Arne Jacob | Math2Market Application Engineer

You can ask questions during the presentation. We might turn on your microphone for further discussions.

Recording will be available tomorrow.

Digital Rock Analysis – 1. Data Collection Virtual Workshop presented by Aya Takase

DIGITAL ROCK ANALYSIS SERIES

- 1. Data collection
- 2. Segmentation and property analyses
- 3. Digital rock simulations

THINGS WE'LL COVER

- How to assess the required resolution
- How to collect high-quality CT images
- How to evaluate the image quality

CT Lab HX by Rigaku The versatile and compact micro-CT scanner

GeoDict by Math2Market The Digital Material Laboratory

WHAT IS DIGITAL ROCK PHYSICS/ANALYSIS?

Digital rock physics

Analysis of flow properties of reservoir rocks using image-based computation

Water + Oil + Gas

By MagentaGreen- https://commons.wikimedia.org/wiki/File:Anticline_trap.svg

Porosity Ratio of open/connected pores Absolute permeability Relative permeability Mechanical properties

Forced imbibition characteristics

Experimental approach	Digital approach	
Empirical	Theoretical	
Slow (years)	Fast (weeks)	
Expensive	Inexpensive	
Needs to scale better	Needs to be validated	

Experimental approach

Digital approach

WHAT IMAGE PROPERTIES TO CONSIDER?

Field of view (FOV)Voxel resolutionSignal-to-noise ratio

(scan time)

Not good enough

Good

Voxel resolution

Not good enough

Good

Field of view (FOV)

Not large enough

Large enough…File size?

HOW DO WE SELECT ALL PARAMETERS?

Field of view (FOV) > Representative elemental volume (REV)

FOV 10 mm

FOV 2.3 mm 450³, 16-bit, 182 MB

Representative elemental volume (REV)

Representative volume element (RVE)

Field of view (FOV) > REV ~ $D_{eff} \ge 5$ [*]

[*] <u>Saxena et al., Adv. Water</u> <u>Resour., 2018, 116, p. 127-144</u>

$D_{\rm eff}$: The effective grain size

Definition: Rumpf et al., Chemie Ingenieur Technik, 1973, 43(6), p. 367-375

Empirical data: Glover et al., Geophysics, 2009, 74(1):E17

Voxel resolution < Dominant throat size / 10 [*]

[*] Saxena et al., Adv. Water Resour., 116, 2018, p. 127-144

Signal to noise ratio (SNR) High enough to segment image

Low SNR

Signal to noise ratio (SNR) High enough to segment image

Low SNR

Field of view (FOV) Voxel resolution Signal-to-noise ratio

HOW DO WE INCREASE THE RESOLUTION & SNR?

Signal to noise ratio (SNR) Voxel resolution

18 sec, 50 µm

2 min, 50 µm

17 min, 25.2 μm 75 min, 9.4 μm

WHAT HAPPENS IF WE INCREASE THE FOV, TOO?

File size = 2 PB = 2000 TB

Voxel resolution = FOV / 3000 ~ FOV / 1000

Small FOV, small voxel

Large FOV, large voxel

WHAT DOES THIS ALL MEAN?

G: ~ 0.2 for siliciclastic rocks

<u>Thomeer, J. Pet. Technol., 1983, 35, p. 809-814</u>

Saxena et al., Adv. Water Resour., 2017, 109, p. 211-235

permeability (mDarcy) porosity (fraction)

$$(k) = 3.8068G^{-1.3334} \left(\underbrace{000}_{2.13} \right)^2 \text{ pore throat diameter}$$

Minimum D ~ voxel size x 10

permeability (mDarcy) porosity (fraction)

permeability (mDarcy) porosity (fraction) $(k) = 3.8068G^{-1.3334} \left(\underbrace{400}_{2.13} \right)^2 \text{ pore throat} \text{ diameter}$

Minimum D ~ voxel size x 10

voxel size porosity (fraction) Minimum permeability

Rock type	Permeability (mD)*	Porosity**
Coarse gravel	10 ⁶ - 10 ⁷	
Sands, gravels	10 ³ - 10 ⁶	
Fine sand, silt	10 ⁻¹ - 10 ³	
Clay, shales	10 ⁻⁶ – 10 ⁻³	8 – 15%
Limestones	10 ³ - 10 ⁵	
Sandstones	10 ⁻² - 10 ³	14 – 30%
Granite	$10^{-5} - 10^{-1}$	

* Introduction to Rock Properties by Prof. Robert Zimmerman at Imperial College London - Course Notes

** Wisconsin Geological and Natural History Survey

 \leftarrow ~ 1 mm \rightarrow

← ~ 1 mm -----

— ~ 200 μm — →

Sandstone Idaho Gray FOV 10 mm, voxel 5 μm 2 hr 20 min scan

Sandstone Liver Rock FOV 7 mm, voxel 2.5 μm 17 hr 30 min scan Shale Eagle Ford FOV 0.7 mm, voxel 0.31 µm 14 hr scan

THINGS COVERED

- How to assess the required resolution
- How to collect high-quality CT images
- How to evaluate the image quality

USEFUL RESOURCES

• PetroWiki

https://petrowiki.spe.org/Rock type influence on permeability

• Digital Rocks Portal

https://www.digitalrocksportal.org/

Q & A SESSION

We'll follow up with your questions.

Recording will be available tomorrow.

Register for the next workshop.

Next: Digital Rock Analysis 2. Segmentation & property analyses August 17th Wednesday 11:00 am PDT / 2:00 pm EDT

THANK YOU FOR JOINING US SEE YOU NEXT TIME

